

Mark Scheme (Results)

Summer 2013

GCE Statistics S2 (6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA036999 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- •

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question Number	Scheme	Marks
1(a)	(5,5,5) or (1,5,5) or (2,5,5)	B1
	(5,5,5) (5,5,1) (5,1,5) (1,5,5) (5,5,2) (5,2,5) (2,5,5) or (5,5,5) and (5,5,1) (× 3) and (5,5,2) (× 3)	B1 (2)
1(b)	(5,5,5) $\left(\frac{3}{10}\right)^3 = \frac{27}{1000} = 0.027$	B1
	(5,5,1) $3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 = \frac{135}{1000} \text{ or } \frac{27}{200} = 0.135$	M1
	(5,5,2) $3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{54}{1000} = \frac{27}{500} = 0.054$	
	$P(M = 5) = \left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2 = \frac{27}{125} = 0.216$	oe A1A1 (4)
1(c)	$P(M = 1) = (0.5)^3 + 3(0.5)^2(0.2) + 3(0.5)^2(0.3)$	M1
	= 0.5	A1
	$P(M = 2) = \left(\frac{1}{5}\right)^3 + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{1}{2} + 3 \times \left(\frac{1}{5}\right)^2 \times \frac{3}{10} + 6 \times \frac{1}{2} \times \frac{1}{5} \times \frac{3}{10}$	M1
	$= 0.284 \text{ or } \frac{71}{250} \text{ oe}$	A1
	<i>m</i> 1 2 5	A1 (7)
	P(M = m) = 0.5 = 0.284 = 0.216	(5) Total 11 marks
	Notes	
1(a)	1^{st} B1 for two of the given triples, any order 2^{nd} B1 for all 7 cases. no incorrect extras	
1(b)	B1 $\left(\frac{3}{10}\right)^3$ or 0.027 oe. This can be a single term in a summation	on
	M1 either $"3" \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2$ or $"3" \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe. May omit the another positive integer in place of the 3. These may be see term in a summation	
	A1 $\left(\frac{3}{10}\right)^3 + 3 \times \frac{1}{2} \times \left(\frac{3}{10}\right)^2 + 3 \times \frac{1}{5} \times \left(\frac{3}{10}\right)^2$ oe A1 0.216 oe	
1(c)	1 st M1 correct calculation for $P(M = 1)$ or $P(M = 2)$, working must and not implied by a correct answer. 1 st A1 either $P(M = 1)$ or $P(M = 2)$ correct	
	2^{nd} M1 correct calculation for both P($M = 1$) and P($M = 2$), or thei adding up to 1, but do not allow probabilities of 0.5, 0.2 and 0.3 2^{nd} A1 both P($M = 1$) and P($M = 2$) correct	r probabilities
	3 rd A1dep on both M marks awarded. All three values written down correct probabilities. They must be in part (c) but they do not need table.	
0	NB A fully correct table with no working will get M0 A0 M1 A1 A0.	
Question Number	Scheme	Marks

	(2)
2(b) $X \sim Po(1.5)$	B1
$P(X > 2) = 1 - P(X \le 2)$	M1
= 1 - 0.8088	
= 0.1912 awrt 0.191	A1
	(3)
2(c) $[\lambda = 300 \times 0.25 = 75]$	
<i>X</i> ~N(75,75)	B1 B1
$P(X < 90) = P(X \le \frac{89.5 - 75}{\sqrt{75}})$	M1M1
$= P(Z \le 1.6743)$	
= awrt 0.953 or 0.952	A1
	(5)
	Total 10 marks
Notes	
2(a) M1 0.25e ^{-0.25} o.e	
2(b) B1 stating or using Po(1.5)	
M1 stating or using 1 - $P(X \le 2)$	
2(c) 1 st B1 for normal approximation and correct mean	
2^{nd} B1 Var (X) = 75 or sd = $\sqrt{75}$ or awrt 8.66 (may be given if	f correct in standardisation
formula)	
1 st M1 using either 89.5 or 88.5 2 nd M1 Standardising using their mean and their sd, using [89	9 5 88 5 or 891 and for
finding correct area	<i>7.5</i> , 66.5 of 67] and for
NB use of Poisson gives an answer of 0.9498 and gains n	o marks

Question Number	Scheme	Marks
3(a)	$X \sim Po(7)$ $P(X > 10) = 1 - P(X \le 10)$ = 1 - 0.9015 = 0.0985 awrt 0.0985	B1 M1 A1 (3)
3(b)	$P(X > d) < 0.05$ Or $P(X \ge d) < 0.05$ $P(X \le d) > 0.95$ $P(X < d) > 0.95$ $P(X < d) > 0.95$ $P(X \le 11) = 0.9467$ $P(X < 12) = 0.9467$ $P(X \le 12) = 0.9730$ $P(X < 13) = 0.9730$ Least number of games =12Least number of games 13	M1 A1 A1 (3)
3(c)	H ₀ : $\lambda = 1$, $(\mu = 28)$ H ₁ : $\lambda > 1(\mu > 28)$ $Y \sim Po(28)$ approximated by N(28,28) $P(Y \ge 36) = P(Z \ge \frac{35.5 - 28}{\sqrt{28}})$ $= P(Z \ge 1.42)$ = 0.0778 or $1.42 < 1.6449CR \ X \ge 37.20.0778 > 0.05 so do not reject H0/not significant. Not in CRThere is no evidence that the average rate of sales per day has increased.$	B1 B1
	Notes	
3(a) 3(b)	B1 stating or using Po(7) M1 stating or using 1 - P($X \le 10$) M1 using or writing P($X > d$) < 0.05 or P($X < d$) > 0.95 (condone \ge instead of > and \le instead of <) May be implied by correct answer. Different letters may be used. 1 st A1 P($X \le 12$)/P($X < 13$) = awrt 0.973 or P($X \le 11$) / P($X < 12$) = awrt 0.947 May be implied by a correct answer 2 nd A1 12 or 13 NB An answer of 12/13 on its own with no working gains M1A1A1	
3(c)	 1st B1 both hypotheses correct using λ or μ, and 1 or 28 2nd B1 for writing or using a normal approximation with correct mean and Var (may be given if sd correct in standardisation formula) 1st M1 for use of a continuity correction 35.5 or 36.5 or x ± 0.5 2nd M1 Standardising using their mean and their sd. If they have not written down a mean and sd then these need to be correct here to award the mark. They must use [35.5, 36.5, 36, x or x ± 0.5] For CR must have = awrt 1.64 or 1.65 1st A1 awrt 0.0778 or 0.9222 or the statement 1.42 < awrt 1.65/1.64 or CR X ≥ 37.2/X > 37.2 3rd M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. NB Non contextual contradicting statements gets M0 2nd A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Need the words "rate/average number", "sales" and "increased" oe NB If found P(X = 36) they can get B1B10M0A0M0A0 	

		5 4
4 (a)	$L(X) = \frac{1}{2}$	B1 (1
4(b)	$Var(X) = E(X^2) - (E(X))^2$	
	$= \int_{b}^{4b} \frac{x^{2}}{3b} dx - (\frac{5b}{2})^{2}$	M1
	- 56 2	M1d
	$=\left[\frac{9}{9b}\right]_{b}$ $-\frac{1}{4}$	
	$=\frac{63b^3}{9b}-\frac{25b^2}{4}$	
		Alcso
		(3
4(c)		M1
	$=3b^{2}$	A1 (2
4 (d)		(2
	$\begin{bmatrix} 0 & x < 1 \end{bmatrix}$	B1B1
	$F(x) = \begin{cases} \frac{x-1}{x-1} & 1 \le x \le 4 \end{cases}$	(2
	$F(x) = \begin{cases} 0 & x < 1 \\ \frac{x-1}{3} & 1 \le x \le 4 \\ 1 & x > 4 \end{cases}$	
	$\begin{pmatrix} 1 & x > 4 \end{pmatrix}$	
4(e)	$\frac{x-1}{3} = 0.5$ so $x = 2.5$	B1
	3	(]
Alt 4(b)	$\int U (x) = \int b (x - \bar{x})^2 dx$	Total 9 mark
	$Var(X) = \int_{a}^{b} \frac{(x-\bar{x})^{2}}{b-a} dx$	M1
	$= \int_{b} \frac{12b}{12b} dx$	
	$= \left[\frac{\frac{4x^3}{3} - 10bx^2 + 25b^2x}{12b}\right]_{b}^{4b}$	M1
	L 3 <i>D</i>	
	$=\frac{9b^3}{12b}$	
		A1cso(3)
	4 Notes	
4(b)	NB remember the answer is given (AG) so they must show their wo	rking
	$\int 1^{\text{st}} \text{M1 for using} \int \frac{x^2}{3h} dx$ - (their (a)) ² limits not needed and condone million	issing dr. NR
	need	
		b
	not use the letter x but if they use b instead do not award if they c	cancel down to -3
	NB Check they have subtracted $(\text{their}(a))^2$	$x^n \rightarrow x^{n+1}$
	2 nd M1 dependent on previous M being awarded. For some correct integ and correct limits substituted at some point. condone 4b ³ instead	
	A1 for correct solution with no incorrect working seen.	
4(c) 4(d)	M1 for writing or using $4Var(X)$ 1 st B1 top and bottom line. Allow use of \leq instead of $<$ and \geq in	stead of >
	2^{nd} B1 middle row. Allow use of < instead of < and \geq instead > and	
Question	Scheme	Marks
Number 5(a)	$F(1) = 0, \frac{4}{10} + a + b = 0$	M1
- ()	$1(1) - 0, \frac{1}{10} + u + v - 0$	
		A1

	$E(X) = \int_{1}^{2} \frac{3}{10} (x^{3} + 2x^{2} - 2x) dx$ = $\frac{3}{10} \left[\frac{1}{4} x^{4} + \frac{2}{3} x^{3} - x^{2} \right]_{1}^{2}$	M1 M1d A1
	$=\frac{13}{8}$	A1 (4)
	F(1.425) = 0.24355, F(1.435) = 0.25227	M1A1
	0.25 lies between $F(1.425)$ and $F(1.435)$ hence result.	A1 (3)
5(a)	Notes 1^{st} M1 using F(1) = 0. Clear attempt to form a linear equation for <i>a</i> and <i>b</i>	Total 12 marks
	 1stA1 either a = -0.6 or b = 0.2 Previous M must be awarded 2nd M1 using F(2) = 1. Clear attempt to form a second linear equation for a and b 2nd A1 if 1st A1 awarded then both a and b must be correct otherwise award if either a = -0.6 or b = 0.2 alt 1st M1 F(2) - F(1) = 1. Leading to a value for a: 1st A1 a = -0.6 2nd M1 using F(2) = 1 or F(1) = 0. Leading to a value for b: 2nd A1 b = 0.2 NB correct values for a and b with no working scores no marks. B1 They must differentiate and then factorise. cso 1st M1 for clear attempt to use xf(x) with an intention of integrating (Integral sign enough) Ignore limits. Must substitute in f(x) or "their f(x)". 2nd M1 dependent on previous M being awarded for some correct integration at least one correct term with the correct coefficient. 1st A1 for fully correct (possibly unsimplified) integration. Ignore limits 2nd A1 Accept 1.63 and 1.625 or some other exact equivalent M1 expression showing substitution of 1.425 or 1.435 into F(x) [or into F(x) - 0.25] [or putting their F(x) = 0.25 and attempting to solve leading to x =] May be implied by either prior of the correct environ the prior below for the pr	
5(b) 5(c) 5(d)	enough) Ignore limits. Must substitute in $f(x)$ or "their $f(x)$ ". 2 nd M1d dependent on previous M being awarded for some correct integra one correct term with the correct coefficient. 1 st A1 for fully correct (possibly unsimplified) integration. Ignore limits 2 nd A1 Accept 1.63 and 1.625 or some other exact equivalent M1 expression showing substitution of 1.425 or 1.435 into $F(x)$ [or into	tion at least F(x) - 0.25]
5(b) 5(c) 5(d)	enough) Ignore limits. Must substitute in $f(x)$ or "their $f(x)$ ". 2 nd M1d dependent on previous M being awarded for some correct integra one correct term with the correct coefficient. 1 st A1 for fully correct (possibly unsimplified) integration. Ignore limits 2 nd A1 Accept 1.63 and 1.625 or some other exact equivalent M1 expression showing substitution of 1.425 or 1.435 into $F(x)$ [or into	tion at least F(x) = 0.25] be implied by x = awrt 1.432] re root Marks
5(b) 5(c) 5(d)	enough) Ignore limits. Must substitute in $f(x)$ or "their $f(x)$ ". 2 nd M1d dependent on previous M being awarded for some correct integra one correct term with the correct coefficient. 1 st A1 for fully correct (possibly unsimplified) integration. Ignore limits 2 nd A1 Accept 1.63 and 1.625 or some other exact equivalent M1 expression showing substitution of 1.425 or 1.435 into $F(x)$ [or into [or putting their $F(x) = 0.25$ and attempting to solve leading to $x =$] May 1 either pair of the correct answers as given below for the 1 st A1 1 st A1 awrt 0.244 and awrt 0.252 [or awrt -0.00645 and awrt 0.00227] [or x 2 nd A1 0.25 lies between F(1.425)and F(1.435) [or change in sign therefor between] [or "1.432" lies between 1.425 and 1.435 therefore root	tion at least F(x) - 0.25] be implied by x = awrt 1.432

PMT

	$(0 \le) X \le 1 \cup 10 \le X (\le 20)$	A1A1 (5)
6(b)	$H_{0}: p = 0.25$ $H_{1}: p < 0.25$ $X \sim B(20, 0.25)$	B1
	$P(X \le 3) = 0.2252$ or CR $X \le 1$	M1A1
	Insufficient evidence to reject H_0 , Accept H_0 , Not significant.	M1d
	3 does not lie in the Critical region.	
	No evidence that the changes to the process have reduced the percentage of defective articles (oe)	Alcso
		(5)
		Total 10 marks
	Notes	
6(a)	M1 using B(20,0.25) may be implied by a correct CR (allow w probability statement) $1^{\text{st}} \text{ A1 awrt } 0.0139$ $2^{\text{nd}} \text{ A1 awrt } 0.0243$ $3^{\text{rd}} \text{ A1 } X \leq 1 \text{ or } 0 \leq X \leq 1 \text{ or } [0,1] \text{ or } 0,1 \text{ or equivalent statem}$ $4^{\text{th}} \text{ A1 } X \geq 10 \text{ or } 10 \leq X \leq 20 \text{ or } 10,11,12,13,14,15,16,17,18}$ or equivalent statements NB These two A marks must be for statements with <i>X</i> (any letter) on probability statements and SC for CR written as $1 \geq X \geq 10$ gets A	ments 3,19,20 or [10,20] ly – not in
6(b)	B1 both hypotheses with p 1 st M1 using B(20, 0.25) and finding P($X \le 3$) or P($X \ge 4$) may be implied by a correct CR 1 st A1 0.2252 (allow 0.7748) if not using CR or CR $X \le 1$ or $X < 2$ 2 nd M1dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non contextual statements) A1cso Conclusion must contain the words changes/new process oe, reduced oe number/percentage oe , and defective articles/defectives . There must be no incorrect working seen.	

PMT

Question Number	Scheme	Marks
7(a)	Distribution $X \sim B(n, 0.1)$	B1
		(1)
7(b)	<i>Y</i> ~B(10,0.1)	B1
	$P(Y \ge 4) = 1 - P(Y \le 3)$	M1
	= 1 - 0.9872	A 1
	= 0.0128	A1 (2)
7(a)		(3)
7(c)	$0.9^n < 0.05$ or $1 - (0.9)^n > 0.95$	M1
	n > 28.4	Al
	n = 29	A1
	alternative	
	B(28,0.1): P(0) = 0.0523	M1
	B(29,0.1): P(0) = 0.0471	A1
	n = 29	A1cao
		(3)
7(d)	$C \sim Po(5)$	B1
	$P(\mathcal{C} > 10) = 1 - P(\mathcal{C} \le 10)$	M1
	= 1 - 0.9863	
	= 0.0137	A1
		(3)
	NT-4	Total marks 10
7(a)	Notes B1 for "binomial" or B(
7(a) 7(b)	B1 writing or using B(10,0.1)	
7(0)	M1 writing or using $1 - P(Y \le 3)$	
	A1 awrt 0.0128	
7(c)	M1 $(0.9)^n < 0.05$, oe, or $(0.9)^n = 0.05$, oe, or $(0.9)^n > 0.05$, oe, or s	eeing 0.0523 or
	seeing 0.0471	C
	1^{st} A1 [P(0)] = 0.0471 or getting awrt 28.4 May be implied by o	correct answer.
	2^{nd} A1 cao $n = 29$ should not come from incorrect working.	
	NB An answer of 29 on its own with no working gains M1A1A	1
7(d)	B1 writing or using $Po(5)$	
	M1 writing or using $1 - P(C \le 10)$ A1 awrt 0.0137	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036999 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

